VQ VAE


Vector-quantized variational autoencoder (VQ VAE) is a generative model that uses vector quantization to learn discrete latent representations.

Instruction-Guided Autoregressive Neural Network Parameter Generation

Add code
Apr 02, 2025
Viaarxiv icon

MuTri: Multi-view Tri-alignment for OCT to OCTA 3D Image Translation

Add code
Apr 02, 2025
Viaarxiv icon

Arch-LLM: Taming LLMs for Neural Architecture Generation via Unsupervised Discrete Representation Learning

Add code
Mar 28, 2025
Viaarxiv icon

Make Some Noise: Towards LLM audio reasoning and generation using sound tokens

Add code
Mar 28, 2025
Viaarxiv icon

Harmonizing Visual Representations for Unified Multimodal Understanding and Generation

Add code
Mar 27, 2025
Viaarxiv icon

HOIGPT: Learning Long Sequence Hand-Object Interaction with Language Models

Add code
Mar 24, 2025
Viaarxiv icon

Learning Beamforming Codebooks for Active Sensing with Reconfigurable Intelligent Surface

Add code
Mar 24, 2025
Viaarxiv icon

Improving Autoregressive Image Generation through Coarse-to-Fine Token Prediction

Add code
Mar 20, 2025
Viaarxiv icon

A Foundation Model for Patient Behavior Monitoring and Suicide Detection

Add code
Mar 19, 2025
Viaarxiv icon

GenM$^3$: Generative Pretrained Multi-path Motion Model for Text Conditional Human Motion Generation

Add code
Mar 19, 2025
Viaarxiv icon