Vector-quantized variational autoencoder (VQ VAE) is a generative model that uses vector quantization to learn discrete latent representations.
Recent advances in auto-regressive transformers have achieved remarkable success in generative modeling. However, text-to-3D generation remains challenging, primarily due to bottlenecks in learning discrete 3D representations. Specifically, existing approaches often suffer from information loss during encoding, causing representational distortion before the quantization process. This effect is further amplified by vector quantization, ultimately degrading the geometric coherence of text-conditioned 3D shapes. Moreover, the conventional two-stage training paradigm induces an objective mismatch between reconstruction and text-conditioned auto-regressive generation. To address these issues, we propose View-aware Auto-Regressive 3D (VAR-3D), which intergrates a view-aware 3D Vector Quantized-Variational AutoEncoder (VQ-VAE) to convert the complex geometric structure of 3D models into discrete tokens. Additionally, we introduce a rendering-supervised training strategy that couples discrete token prediction with visual reconstruction, encouraging the generative process to better preserve visual fidelity and structural consistency relative to the input text. Experiments demonstrate that VAR-3D significantly outperforms existing methods in both generation quality and text-3D alignment.
Deep learning has significantly improved time series classification, yet the lack of explainability in these models remains a major challenge. While Explainable AI (XAI) techniques aim to make model decisions more transparent, their effectiveness is often hindered by the high dimensionality and noise present in raw time series data. In this work, we investigate whether transforming time series into discrete latent representations-using methods such as Vector Quantized Variational Autoencoders (VQ-VAE) and Discrete Variational Autoencoders (DVAE)-not only preserves but enhances explainability by reducing redundancy and focusing on the most informative patterns. We show that applying XAI methods to these compressed representations leads to concise and structured explanations that maintain faithfulness without sacrificing classification performance. Additionally, we propose Similar Subsequence Accuracy (SSA), a novel metric that quantitatively assesses the alignment between XAI-identified salient subsequences and the label distribution in the training data. SSA provides a systematic way to validate whether the features highlighted by XAI methods are truly representative of the learned classification patterns. Our findings demonstrate that discrete latent representations not only retain the essential characteristics needed for classification but also offer a pathway to more compact, interpretable, and computationally efficient explanations in time series analysis.
Automated floorplan generation aims to improve design quality, architectural efficiency, and sustainability by jointly modeling global spatial organization and precise geometric detail. However, existing approaches operate in raster space and rely on post hoc vectorization, which introduces structural inconsistencies and hinders end-to-end learning. Motivated by compositional spatial reasoning, we propose TLC-Plan, a hierarchical generative model that directly synthesizes vector floorplans from input boundaries, aligning with human architectural workflows based on modular and reusable patterns. TLC-Plan employs a two-level VQ-VAE to encode global layouts as semantically labeled room bounding boxes and to refine local geometries using polygon-level codes. This hierarchy is unified in a CodeTree representation, while an autoregressive transformer samples codes conditioned on the boundary to generate diverse and topologically valid designs, without requiring explicit room topology or dimensional priors. Extensive experiments show state-of-the-art performance on RPLAN dataset (FID = 1.84, MSE = 2.06) and leading results on LIFULL dataset. The proposed framework advances constraint-aware and scalable vector floorplan generation for real-world architectural applications. Source code and trained models are released at https://github.com/rosolose/TLC-PLAN.
Deep Learning models encode rich semantic information in their hidden representations. However, it remains challenging to understand which parts of this information models actually rely on when making predictions. A promising line of post-hoc concept-based explanation methods relies on clustering token representations. However, commonly used approaches such as hierarchical clustering are computationally infeasible for large-scale datasets, and K-Means often yields shallow or frequency-dominated clusters. We propose the vector quantized latent concept (VQLC) method, a framework built upon the vector quantized-variational autoencoder (VQ-VAE) architecture that learns a discrete codebook mapping continuous representations to concept vectors. We perform thorough evaluations and show that VQLC improves scalability while maintaining comparable quality of human-understandable explanations.
Vector-quantized variational autoencoders (VQ-VAEs) are central to models that rely on high reconstruction fidelity, from neural compression to generative pipelines. Hierarchical extensions, such as VQ-VAE2, are often credited with superior reconstruction performance because they split global and local features across multiple levels. However, since higher levels derive all their information from lower levels, they should not carry additional reconstructive content beyond what the lower-level already encodes. Combined with recent advances in training objectives and quantization mechanisms, this leads us to ask whether a single-level VQ-VAE, with matched representational budget and no codebook collapse, can equal the reconstruction fidelity of its hierarchical counterpart. Although the multi-scale structure of hierarchical models may improve perceptual quality in downstream tasks, the effect of hierarchy on reconstruction accuracy, isolated from codebook utilization and overall representational capacity, remains empirically underexamined. We revisit this question by comparing a two-level VQ-VAE and a capacity-matched single-level model on high-resolution ImageNet images. Consistent with prior observations, we confirm that inadequate codebook utilization limits single-level VQ-VAEs and that overly high-dimensional embeddings destabilize quantization and increase codebook collapse. We show that lightweight interventions such as initialization from data, periodic reset of inactive codebook vectors, and systematic tuning of codebook hyperparameters significantly reduce collapse. Our results demonstrate that when representational budgets are matched, and codebook collapse is mitigated, single-level VQ-VAEs can match the reconstruction fidelity of hierarchical variants, challenging the assumption that hierarchical quantization is inherently superior for high-quality reconstructions.
Vision-Language-Action (VLA) models achieve preliminary generalization through pretraining on large scale robot teleoperation datasets. However, acquiring datasets that comprehensively cover diverse tasks and environments is extremely costly and difficult to scale. In contrast, human demonstration videos offer a rich and scalable source of diverse scenes and manipulation behaviors, yet their lack of explicit action supervision hinders direct utilization. Prior work leverages VQ-VAE based frameworks to learn latent actions from human videos in an unsupervised manner. Nevertheless, since the training objective primarily focuses on reconstructing visual appearances rather than capturing inter-frame dynamics, the learned representations tend to rely on spurious visual cues, leading to shortcut learning and entangled latent representations that hinder transferability. To address this, we propose ConLA, an unsupervised pretraining framework for learning robotic policies from human videos. ConLA introduces a contrastive disentanglement mechanism that leverages action category priors and temporal cues to isolate motion dynamics from visual content, effectively mitigating shortcut learning. Extensive experiments show that ConLA achieves strong performance across diverse benchmarks. Notably, by pretraining solely on human videos, our method for the first time surpasses the performance obtained with real robot trajectory pretraining, highlighting its ability to extract pure and semantically consistent latent action representations for scalable robot learning.
The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
Most 3D scene generation methods are limited to only generating object bounding box parameters while newer diffusion methods also generate class labels and latent features. Using object size or latent feature, they then retrieve objects from a predefined database. For complex scenes of varied, multi-categorical objects, diffusion-based latents cannot be effectively decoded by current autoencoders into the correct point cloud objects which agree with target classes. We introduce a Class-Partitioned Vector Quantized Variational Autoencoder (CPVQ-VAE) that is trained to effectively decode object latent features, by employing a pioneering $\textit{class-partitioned codebook}$ where codevectors are labeled by class. To address the problem of $\textit{codebook collapse}$, we propose a $\textit{class-aware}$ running average update which reinitializes dead codevectors within each partition. During inference, object features and class labels, both generated by a Latent-space Flow Matching Model (LFMM) designed specifically for scene generation, are consumed by the CPVQ-VAE. The CPVQ-VAE's class-aware inverse look-up then maps generated latents to codebook entries that are decoded to class-specific point cloud shapes. Thereby, we achieve pure point cloud generation without relying on an external objects database for retrieval. Extensive experiments reveal that our method reliably recovers plausible point cloud scenes, with up to 70.4% and 72.3% reduction in Chamfer and Point2Mesh errors on complex living room scenes.
Generative modeling offers a promising solution to data scarcity and privacy challenges in time series analysis. However, the structural complexity of time series, characterized by multi-scale temporal patterns and heterogeneous components, remains insufficiently addressed. In this work, we propose a structure-disentangled multiscale generation framework for time series. Our approach encodes sequences into discrete tokens at multiple temporal resolutions and performs autoregressive generation in a coarse-to-fine manner, thereby preserving hierarchical dependencies. To tackle structural heterogeneity, we introduce a dual-path VQ-VAE that disentangles trend and seasonal components, enabling the learning of semantically consistent latent representations. Additionally, we present a guidance-based reconstruction strategy, where coarse seasonal signals are utilized as priors to guide the reconstruction of fine-grained seasonal patterns. Experiments on six datasets show that our approach produces higher-quality time series than existing methods. Notably, our model achieves strong performance with a significantly reduced parameter count and exhibits superior capability in generating high-quality long-term sequences. Our implementation is available at https://anonymous.4open.science/r/TimeMAR-BC5B.